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SUMMARY

A transformation theory of systems of partial differential
equations is developed which allows the construction of classes of
pressur-ensity relations depending on arbitrarily many parameters
for which the equations governing the flow can he transformed into an
essentially simpler form, namely, into the Cauchy%iemann equations in
the subsonic region, into the system corresponding to the wave equation
in the supersonic case, and finally into that form corresponding to the
Tricomi equation in the transonic region. The transition from one
system of differential equations to the other is always such that only
the solving of ordinary differential equations is required in order to
find solutions of the more complicated system from corresponding
solutions of the simpler one.
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It has already been observedby Chaplygin (reference 1) that in
the case of a pressure-density relation of the form p = –~+ b,a >0

the equations describing a steady irrotational flow in the ~lane can he
reduced to the CauchyXRiemann differential equations. This is achieved
by transforming the equations into the hodograph plane, that is, the
plane of the velocity conqonents, and using suitable cotiinations of
the latter as independent variables. Since any pressur~ensity
relation can, in smaller regions of the veriables involved, be approxi-
mated by the foregoing relation, approximation theories can be developed
which makeiuse of the Cauchy-iemann equations. A series of recent
papers, by Von K&n&n, Tsien, flers,Gelbert, Bartnoff, and Lin, follow
this idea (references 2 to 9).

The investigations taken up in this report originated in the
question whether tke ideas developedby the Swedish mathematician
Baedclund, in his transformation theory of pertial differential equa–
tions of second order, could, after suitable modifications, be utilized

,
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2 I?ACATN 2065

for the study of the equations of compressible fluid flow. The funda-
mental pro%lem of Baecklund was to find all pairs of surfaces Z
and x’ in an x,y,z—syace and an xt,yr,zt+yace, respectively, and a
one-to-one upping letween them such that, for corresponding points,
four given equations

Fi(x,y,z,p,cl,x’,y?,z’,p’,cl’) = o (i =1,2,3,4) (1)

are satisfied. As usual p and q designate the partial derivatives
of z with respect to x and y and, similarly, p’ and q’ the
derivatives of z* with respect to x’ and y~. It is clear that,
for a surface Z given, in general no surface z! can be found which
can %e mapyed onto Z in such a way that equations (1) are satisfied.
In order to find the necessmy and sufficient conditions for the proper
surface Zs end msppiIigof z onto xi to exist, the following
operations, according to Baecklund, must be performed (reference 10):

(a) Considering xx and Y! as functions of x and y, each of
equations (1) is to le differentiated up to the second order with
respect to the two independent variables.

(3) l?romthe equations thus oltained conibinedwith equations (1),
all quantities lesring a prime are to be eliminated.

In general the elimination result will consist of two partial
differential equations of the third order in z(x,Y). They represent
the conditions on the surface Z. If the differentiations of first
order in step (a) conibinedwith equations (1) already allow for the
elimination of the primed quantities, the resulting equation of second ‘
order represents the conditions on the surface Z sought. Steps (a)
and (%) may also _betaken with reversed roles of surfaces Z and Ef
and will lead to one or two partial tifferemtial equations in Z* as
a function of x’ and y’.

These considerations show’that equations (1) link solutions of
two, in general, different systems of partial differential 8quations
with each other. H one system is simpler then the other, .asserti~s
a%out the solutions of the more difficult system may be derived from
knowledge of the solutions of the siqler one.

The steady irrotatio~ flow of a compressible fluid may be
descri%ed%y the equations

‘Y —Vx=o 1
} (2)

———. . . ..——. — — ———



NACATN 2065 3

where x and y sxe Cartesian coordinates in the ~hysical plane
and u and v the co~onents of the velocity vector. The density p -
is to be thought of, according to Bernoulli~s law, as a-function of the .

speed. q = m. The subscripts .x and y in system (2) designate
the respective differentiations.

Another description of the flow is obtainedby introducing the
potential function @ and the stream function w as follows:
Equations (2), considered as integrability conditions, show that there
exist functions @(x,y) and $(x,y) such that

This leads to the eqm.tidns

pu = VY

-p-v = v~

(3)

J

in which the erguments u and v in p ere to be replacedby @x
‘d @y> respectively.

Both systems (2) and (3) are nonlinear in the case of compressible
fluid flow because p is a variable function of u and v. As was
recognized by Chaplygin, systems (2) and (3) take on essentially simpler
form if the physical plane is replacedby the holograph plane; that is,
if the velocity components u and v are introduced as independent
variables instead of x eml y. Systems (2) and (3) then become linear.
Each of the systems takes on the form

where .$.and q
equations (2) and
case of equations

represent the
the potential

(3)*

~u+c$~v=o (i = 1,2) (4)

coordinates x and y in the case of
and stream functions @ and V ti the

—. —-.. .. . . __. —__ ..__. _.-. .—v —. —.-.. — -
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The coefficients l?; and ~ are definite functions of u snd v

and their forms depend on the equation of state adopted. For an inco~
pressible fluid, equations (4) are identical.with-the Cauchy~iemann
equations.

Very often it is convenient to introduce coordinates other thsn u
and v in the hodograph plane, for example, polar coordinates, or any
other generalized coordinates s and t connected with u and v

.
by a transformation

or

.

s = S(u,v)

t = t(u,v) 1

u = U(s,t)

T = V(s,t) }

where both transformation (5) and its
continuously differentiable. If such
equations (4), a system

(5)

(5a)

intierse,transformation (5a), are
a transformation is applied to

Vo (i = 1,2)
t“=

(6)

of the same form as system (4) is obtained with new coefficients $

and ek WhiCh

nates s and

Following
raised: Is it

are now to’%e written as functions of the new coordi—

t.

the ideas of Baecklund, the following question may be
possible to interrelate two given systems of differential

equations of the form of
type? As sn analogue to
“Baecklund ty_pe”will be
of the form

system (6) by a transformation of the Baecklund
equations (1), .atrsnsformation of the
defined here as given by a system of equations

(i =1,2, . . .,6)

,.
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A solution of system (7)is represented ly two pairs of fhnctions

l-l= q(s,t)

gl = E’(s’.,t’)1
llt = qqs(tq J

*

(8)

having as independent variables s,t end st,tt, respectively, and a
one=t~e mapping between the s,t- and st,t~-plane such that at corres-
ponding potits all equations (7)are satisfied.

If a geometrical interpretation is desired, two spaces P and Pt,
each of four Mmensions, with the coordinates (sst>E,7)
and (sr,t~,gt,q?),respectively, have to be introduced. A pair of
functions g = g(s,t) and q = q(s,t) represents a tw~ional
surface x in P and correspondingly a pair of functions tj~= ~t(st,tt)
and qt = qt(st,tf) represents a surface X? in Pt. To solve
system (7)means to find all pairs of surfaces Z and Zt and a
one-to-one mapping between them such that the quantities character-
izing their tangent planes at corresponding points satisfy
relations (7). .

That the choice of six equations in system (7)is natural.follows
from the fact that if s and t =e considered,as independmt mri–
ables end ~,~,~t,qt,st,and tt as dependent variables,‘thenumber of
equations coincides with the number of unknown functions.

Again, as in the case of equatians (1), the following important
question presents itself: W&t surfaces Z (or Zt) belong to a solu-
tion of system (7)? It is to be expected that necessary and sufficient
conditions may be found from operaticms corresponding to those applied
to equations (l), that is,

(a) Considering St and t‘ as functions of s and t, each of
equations (7)is to be differentiated with respect to s anat up to
the second order.

(b) AIJ quantities bearing a prime are to be eliminated from the
equations thus obtained conibinedwith equatians (7).

The.result of the elimination will in general consist of four
partial differential equations of third order. In particular cases a
Mffermtiation of first order in operation (a) suffices to yield
necessery and sufficient conditions on Z so that Zt should exist,
by the elimination of the primed quantities. This is the case with
all Baecklund transformations stutied and applied in this report.

.—— — ..—- ..
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fact
The essential yoint in the preceding consideration is again the
that, %y a Baecklund transformation of the type of system (7), two,

in general, different systems of partisl differential equations con-
taining two independent and two dependent variables sre interconnected.

For the purposes of this investigation it is not necessary to
study the most general.type of Baeclihzndtransformation such as
system (7). Since the interest is directed to linear systems of the
ty-peof system (6), it is sufficient to consider only such equations (7)
which are linear and homogeneous in the quantities ~,q,~’, and q’ and
their derivatives of first order. The further more restrictive assump-
tion will be made that two of equations (7) describe a one-to-one
mapping of a domain of the.s,t—plane onto a domain of the s’,t’—plane
or, in other words, represent a transformation of the independent vari-
ables given by

s? = f(s,t) 1 (9)
t~ = g(s,t)

Since tr~for~tions of any qusrititiesresulting from such a
coordinate transformation can easily be handled, there is no essential
loss of generality if the assumption is henceforth made that equa–
tions (9) reduce to

St=s

1

(lo)
tl=t

e

System (7’)can then be replaced by a system of only four equations,
linear and homogeneous in ~,TI,~t,md q’, and their derivatives of
first order with respect to s and t. The coefficients may be arbi–
trsry functions of s and t satisfying the condition that they be
&ice continuously differentiable. Only the additional condition, that
the four equations can be solved for the four first partial derivatives
of k and-
and qt, is
form

~ and also for the
assumed. Equations

corresponding derivatives of ~ ‘
(7) C= therefore be brought into the

.J’
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where the coefficients on the right are all functions of s and t,
and the determinant of the coefficient matrix of equations (u)
contained in the first four columns on the right is supposed to be
different from zero. .

Equations (lJ.)cau be brought into a simpler form by use of the
matrix cslculus notation. Set

(
al

1
A=

2

al

(

~1
1

R=
2
‘1

1

a2

2
a2

)
1
‘2

2
‘2

(

“Tl
1

T=
2

‘1

..1
‘2

2
‘2)

1
72

2
72

)
$

2
‘2
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() ()k by ~ and \~I%rther designate the column matrix ,T by ~?. If

differentiation of a matrix means, as usual, differentiation of each of
its elements, equations (11) csn then be written in the simple form

A systematic study will now
systems of equations,of the

R~s +T~t +A~+ C{s

1

(12)

S~s+W~t+B~ +D~’

be made of the possibilities of transforming
form of system (6)into each other by trans–

formations of the type described by equations (12), and applications to
compressible fluid flow will be made..

This investigationwas conducted at Syracuse University under the
sponsorship snd with the financial assistance of the National Advisory
Committee for Aeronautics.

.

The author is indebted to Messrs. Helmut Aulbach and Samuel
Schechter for valualle assistance.

SYMBOLS

ccmstants

#

functions of s end t definedby equations (11)
. .

matrices having the previous functions as respective
elements

functions defined
respectively

matrix defined by

unit matrix

by equations (1) and (7),

equation (14)

.

,
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K

k(s),kl(s)

F(a)

M

P

9.

s,t,s*,t*

u,P

x>Y

W-l

W*

a,$

7

N,pi,cll,l+

$“

if
P

u

T

6

constant matrix

functions defined

majorant function

Mach number

pressure

speed

in theorem 3 (appendix)

used in theorem 1 (appendix)

curvilinear coordinates ih hodograph plane

velocity components

Cextesisn coordinates

inverse of matrix W

~:adjo~t!’ of matrix W

constants

in physical plane

exponent in pressure+iensity relation

elements of the matrix H

functions defined’by equations (35a)

velocity potential

stream function

density

function defined%y equatian (87)

variable defined by equation (8o)

angle between velocity vector and x-axis

auxiliary variable defined by relation (74)

column vectors ()()! E.’
. T’ q*’

respectively

function definedby equations (49)

9

—.--.———.- . . ... . ——z . ..-. .__ . . .._ ——___—. ___________ _. __. . _



10

‘*1’”*2

s

\

NACATN 2065

function defined by formla (61)

trace of matrix M

functions of the form given by equation (111) which
approximate u

functions which approximate O*

as subscript, partial derivative with respect to s;
any other mriable used as subscript, partial
derivative with respect to that variable

ANALYSIS

1. Baeclil.undTransformations Comqecting Two Systems of

Partial-DifferentialEquations of First Order

A steady irrotational flow in the plane is describedby a system
of differential equations of the form of system (6). A study of the
application of Baecklund ”transformationsto such systems mnst start
with answering the following fundamental question: Which of the
Baeckl.undtransformations of the form of equations (12) transform two
systems of partial differential equations of the form of system (6)
into each other? A complete answer will be given in this section, and
it will appear in the form of a system of partial differential equa-
tions in the matrix coefficients in equatims (12).

In order to s@lify the writing, system (6)will.always be
written in a matrix form,. After setting

system (6)may be written in the form

(13)

.

,.:

. --

——— — ——— - ———
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(Henceforth, a system of equations written in matrix form as a single
relation will also be referred to as an equation.) Without loss of
generality it may be assumed that the determinant of F is never zero.
As csnbe easily seen, this means that a line t = Constant can never
be touched bya characteristic curve of equation (13). ‘lhiscanal.ways
be achievedby a suitable choice of the coordinates s end. t.
Equation (13) can now be written in the form

(14)

.

where H = —~% represents a inatrixfunction of s and t.

In order to find the conditions L mt satisfyif it is to
‘belongto a solution of system (12), the latter equations must be
differentiated,end the primed quantities eliminated. If the first
equation is differentiatedwith respect to t and the second with
respect to s, subtraction of the ensuing equations yields

Scss + (W– R)~st-T!tt+

D~?s - CL’t + (Ds - @E’ (15)

If, further, the e~ressions for ~~s and ~Xt from equation5 (~)

are substituted in equation (15), the resulting equation is

o =S&s + (W– R)Cst–~~tt +

(Ss –Rt+B+-DR– Cs)!s + (% –Tt–A+DT– cw)~t +

(DA – cB+Bs– At)! +(DC-CD+Ds-@~t (16)

If the assumption is introduced that the coefficient of ~~ in equa-
tion (16)is identically zero, or

Ds –Ct+DC–CD=O (17)

.
then equation (16) is already free of primed quantities and therefore
represents a condition on ~. In gener~l, equatian (16) is of second

..

.
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*
order. Since only equations of the form of equation (13) are studied
here, the further assumptions that

W=R

J

(18)
S=T=O

B~– At+ DA-+~=O (19)

will be made. Transformation (12) then reduces to

and equation (16) to

@lt+B+D W)Cs+(Ws-A– CWj~t=O (21)

The latter procedure leatig to equation (21) maybe subordinated
to the derivation of the integrability conditions of a “Maye&Lie
system” of yartial differential equations. (See reference 11.) Indeed,
if ~ is considered as given, then equations (20) represent such a

.

system for the determination of ~?. ‘AMaye~Lie system expresses all
derivati%s of first order of the unbown functions in terms of the
independent and the depend~t variables themselves. The principal.
theoremof the theory of Maye*Lie systems applied here asserts that,
if equations (ii’)-and (19) ere satisfied, equation (21) is not only a
necessary but also a sufficient condition for the existence of a C ‘
that canbe connected tith C by equations (20). It furthermore
asserts that there exists a ~’ having an arbitrarily preassigned
initial value (to at a given point” (so,to), and ~S is uniquely

determinedly ~co. The computaticm of ~: requires the solving of a
system of ordinary differential equations with given initial conditions.

It is now easy to find further conditions on the coefficient of
equations (12) so that also ~: will satisfy a system of the form of
equation (13). The roles of the quantities ~ and ~S have to be
reversed. To attain this, equations (20) have first to be solved
for ~s =d (t. The assumption that this is possible was introduced

from the beginning and means, evidently, that the determinant of W is
nowhere zero or that W has an inverse, W’ = w–l. The inversion
yields

(22)

.

.
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with

.

At = -JJ-+, c? .

_fJl . ++), Dt .

The conditions sought will now be
in equations (17) and (19) by the
This leads to

4_1A 1
W1 .~l J (23)L

*lB

obtained.by replac~ all quantities
corresponding primed quantities.

Dts – C1t +DSCt _CtD* = O (24)

and the equation satisfied by ~~ is, corresponding to equation (21);

(-n ‘B: + D’wt)vs+(Wts- A’ - C’w’)vt=o (26)

.

The final result obtained may be stated as follows: If all the differ–
ential equations (17), (19), (24), snd (25) in A, B, C, D, and W sre
satisfied, the Baecklund transformation, equations (20), transforms
system (21) into system (26).

,If the systemof equations consisting of equations (17), (19),
(24), and (25) is written in scalar form, the number of unknown scalar
functions exceeds the number of equations by fo-rr. It is therefore to
be expected that, if four of the unknowns are arbitrarily chosen or,
more generally, four additional relations between the unknowns are
added to the system, there will -stillexist infinitely many solutions.
In particular, it is to be expected that the equation in ~ or C:
may arbitrarily be prescribed and still be transformable into infinitely
many other equations by suitable Baecklund transformations.

Consider the problem of finding all Baecklund transformations such
that a preassigned equation

~’s = H~tt (27)

.

..... ....— ____ —..—_ ._. __—. ____ ._._ ~-.—.—. .. .—.——-—-’-... .——.-..—— –. —
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implies equation (26). (Naturally,at all points (s,t) where the
coefficients of equation (26) are not both singular, that is, do not
have van~shing determinants, equations (26) and (27) express the same
relation.) A comparison of equations (27) and (26) shows that then

w~s_At_ ( )~twt = wit –B: –Dlw? H (28)

This equation nmstbe addedto equations (17), (19), (24), ard (25).
The whole system of equations can be essentially simplified by the
following steps: If the second of equatiom (20) is maltipliedby H
from the left and then subtracted from the first, the relation

o .W{s – EW~t+(A-@[ +(C–JB))~’ (29)

is obtained. If the coefficients of equation (26) are not both singular,
equation (29) will hold for any ~ and ~r connected by the Baecklund
transformation, equations (20). An arbitrary constant can be chosen
for ~, and for a gimen pQint (s,t) a corresponding value of < r can
be preassigned. A substitution into equation (29) then shows that

A=H13 and C=HD (30)

,Ih the degenerate case where the coefficients of equation (26) are
sin@ar~ equations (30) will be assumed to be true too. System (29)
%ecomes now

(31)

Thus, relations (30) and (28) are obtained and are to be added to
equations (17), (19), (24), and (25).

It will nowbe shown that equations (24) and (25) are already
consequences of equations (17), (19), (28), and (30). Indeed, equa–
tions (23) imply that

J)ts .+JtsB _wtBs, Ctt .~ttA–wt~

..

— ..—
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.

A substitution into the left side L of equation (24) leads to

and by use of relation (19)

L= -W~~B +W~tA+Wi(DA–~) +WIBW’A– W’AW’B

( )(= Wtt–Bt–I)~w~A– ‘Wts _ At )_C:w: B

But this expression is zero on account of equation (28) and the first
of equations (30). In a similar way it can be verified that equa-
tion (25) is also a consequence of equations (17), (19), (28), and (3o).

It is easyto elitimte thelrimed quantities from equation (28)
by direct substitution or, more simply, by observing that the new equa–
tion may be oltained from equation (28) by dropping the primes from the
latter and replacing H by W%W which correspcmds to an interchange
of the roles of ~ and ~~. This leads to

Ws–A- CW = ~t–B –DW)W–@d (28a)

Equations (30) allow the elimination of A and C from equations (17),
If this is done the following final system for B, D,

~~) ‘wa~s(~~~l&ed:

Ds – (HD)t+DHD-~2=0

. .

Bs -(@t+ DHB– HDB=O 1’(32)

(Ws-HB-BDW= Wt–B– DW)@HW
J

If equations (32) me satisfied, the Baecklund transformation descrihedbY
equa~ions (20), with A
equation ~~ = W-%wg t

snd C! defined ~y equation (30), transforms the
into the equation ~ts = H~7t.

. ..—. ——.— ——-.. ....———- —-—— --—-——-.—..— - ~ . . .. . — —-———. ..
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Some ‘generalremarks will now be made about the nature of equa–
tions (32): The first equation contains only the unkno-wn D, the
second contains the unknown B in addition to D, and finally the
third contains all tlu.”eeunknowns D, B, and W. If tha equations
are solved successively, one of th~ unknown matrices has to be dete~
mined at every step. Since the whole systemof equations (32) is of
the Cauchy~owalewski type and of first order, the gaeral solution

.will depend on 12 arbitrary functions of 1 variable which arise from
the initial conditions. This shows that, in general, each of a mani-
fold of systems of equations depending on 12 arbitrary functions of
1 variable can he transformed into a given system.

A second remark refers to the possibility of generalizing tha
transformations thus far considered. Transformations (20) do not form
a group. This means that, if two such transfopa.tions are composed,
the res~t~g transformation will in general not be contained atnong
transformations (20), but it is exactly this fact that allows for the
construction of an extended class of.transformationswhich make possible
the linking”of systems of differential equations not transformable into ‘
each other before. By “repeatingthe composition process several times,
the class of transformations canbe widened more and more and an
increasing flexibility can then be achieved.

The differential equations connected with the study of a steady’
irrotational flow are of a special type. As a consequence, it is not
necessary to consider here the-most general transformation of the form
of equations (20). The proper ’restrictionsto be made on these trans-
formations will be discussed in the following section.

2. Specialized Systems of Differential Equations and

Specialized Baecklund Transformations

The systew of differential equati~s (s = ~t occ~r~ in the
study of a steady irrotational flow have> after a suitable choice of
coordinates s and t in the hodograph plane, the following two
properties: (a) The elements in the principal diagonal
matrix H are both identically zero and (b) H depends
the variables s and t, say, s.

Property (a) expresses the fact that the equations
from a problem in the calculus of ’mriations. “

Properties
transformations
Property (b) is

of the
only on one of

can be derived

(a) and (b) suggest the consideration of only such of
(20) which preserve both properties (a) and (b).
certainly not destroyed if the assumption is made that

.

—— ..- __.—.— .— .
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all coefficients
immediately to a
resfiting system

The subscript s
only independent
.

17

in transformation (20) depend only on s. This leads
remarkable simplification of system (32). The
of ordinary differential equations is

Ds+DHD-HD2=0

1

.

Bs+DHB-HI)B=O

\

WS–BB-HDW =-(B +DW)W_lHW

indicates the ordinary derivative with respect to the
variable s.

“(33)

Before conditions are introduced insuring preservation also of
yrolerty (a), some consequences will%e drawn from system (33).

The following notation of matrix theory will frequently be used:

(1) The trace

()

ml
T(M) of a matrix M = 1 +

~2
is defined as

1 $

the sum of the elements lying in its principal diagonal, that is,

The -traceT is an additive
matrices Ml and ~,

T(M1 +

L. L

function of M, that is, for any two

M2) =T(M1) +T(~)

and the trace of a scalazzmultiple x“M of M iS

T(w) = XT(M)

It is further easily verified that for a product of the matrices
and M2

‘1

. .. .. ... .. .. . _ . .. .._. —.—_.. -z _— ——e . . . . . . . ._ —.— _.-. —— ._.. . . . . .
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(2) Th~ “adjoint” M* .of’ a &.ijrti M is defined as the matrix

( )
~;+

M* .

*2 ml
. 1 1

Evidently MM* = M*M = 5(M)I, where ‘I represents the unit matrix,

()1 0
I= .

0 1

and

5(M) =

is the determinant of M. If 5(M) +0, ‘=
5(M)

The simple facts of matrix theory reviewed rinderdefinitions (1)
and (2) will nowbe used to draw consequences from equations (33). If
the trace is taken of the left side of the first of equations (33), the
following equation is obtained:

T(Ds) = T(ti-D@ =T(HO*D-D*m) = O

or

T(%) = [T(D)]S= o

This shows that the trace of D is constant.

‘,

.
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multiplied, from the right side, by ‘D*
the resulting equation is

=5( D)T(HD-DH) = O

NACA TN 2065.

If the same equation is
and the trace is then taken,

T.(DsD*)

However, an easy computation shows that

This leads to the fact that the determinant of D is also constant.

In a similar way, multiplying the second of equations (33) by B*
and the third by W* from the right and computing the trace afterward
lead.,as the reader will easily verify, to the further result that
the determinants of B and W are constant too.

If a solution of system (33) is known, a fore-parameter family of
new solutions may be obta~ned by leavi~g D unchsnged but replacing B
and W by new matrices B =BK end W = WK with a common constant
right—hand matrix factor _K, whose determinant 5(K) # O. Indeed, if
substitution of ~ and W in the second and third of,equations (33)
is made, the matrix K appears in each term as a common right-hand
factor, and the equations obtained are therefore consequences of
equations (33). -

A final remark
If D represents a
and 5(D) # O, then

concerns some particular solutions of equations (33):
solution of the first of equations (33)
any scalar multiples of D

B= XDand W=@

with constant factors h and V, v # O, satisfy the second and third
of equations (33). The proof is immediately obtained by substitution.

The general solution of sys~em (33) depends on 12 arbitraq
constants, but only those solutions which guarantee the preservation
of property (a) are of interest. By the addition of this new postulate,
a subclass of the solutions of system (33) will be obtained. Without
trying to characterize the latter completely, a six–parsmeter family
of solutions of this subclass will %e constructed by a specialization
of the form of the matrices involved.
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method of assuring the lresemation of pro~erty (a) is
to %e of the’form

()
ml
1

0
w=

o
2
‘2

Indeed, the matrix H of the @.med equation {~~
to have the form

H-o
1
‘2

H=

g o

and the matrix WIHW of the transformed equation

(34) ‘

then

which shows that yroperty (a) 5.syreserved.

In order to obtain solutions of system (33) with the matrix W-of
the formof equation (34), anaiijustment of the forms of D and B
must %e madeiy sett&

D=

o
1
52

52 01\&

I~wi31now%e proved that system (33)has solutions of the form of
equations (34)‘ma (35)with arbitrarily preassigned.initial values of

the six availa%le matrix elements b;, 62
=’ $;’ $;3 ~:> and U.)2.

2

———-- —..— ——._——.—
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If the same equation is multiplied, from the right side, by D*
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and the trace is then taken, the resulting equation

T(DsD*) =F5(D)T(D-IxI) =o

is

However,,an easy computation shows that

Thiq leads to the fact that the determin&t of D is also constant.

In a-similar way, multiplying the second of equations (33) by B*
and the third by W* from the right and computing the trace afterward
lead, as the reader will easily verify, to the further result that “
the determinants of B and W are constant too.

If a solution of system (33) is known, a four-psmuneter ftily of
new solutions may be obta~ned by leavi~”g D unchanged but replacing B
and W by new matrices B =BK and W = WK with a common constant
right–hand matrix_factor _K, whose determinant 5(K) # O. Indeed, if
substitution of B and W in the second and third of equations (33)
is made, the matrix K appeas in each term as a common right-hand
factor, and the equations obtained we therefore consequences of
equations (33).

A final remark
If D represents a
and 5(D) # O, then

concerns some particular solutions of equations (33):
solution of the first of equations (33)
any scalar multiples of D

B= ADand W=@ . .

with constant factors h and V, K # O, satisfy the second and @ird
of equations (33). The proof is immediately obtained by substitution.

The general solution of system (33) depends on 12 arbitrwy ,
constants, but only those solutions which guarantee the preservation
of property (a) are of interest. By the addition of this new postulate,
a subclass of the solutions of system (33) will be obtained. Without
trying to characterize the latter completely, a six–pdrameter”ftily
of solutions of this subclass will be constructed by a specialization
of the form of the matrices involved.



. . ... . .. . .

20

.

NYLCATN 2065

A simple method of assuring the preservation of property (a) is
to assume W to be of theeform

()
&

1
0

w=

o
2
‘2

(34)

Indeed, the matrix H of the primed equation ~~s = H~tt is supposed
to have the form

-H
o

1
72.

H=

~: o

and the matrix WIHW of the transfo~ed equation (~ = W_%ct is

then

which shows that property (a) is preserved.

In order to obtain solutions of system
‘ the formof equation (34), an adjustment of
must be made by setting

1
62

0

and

1

(33) with the matrix W of
the forms of D and B

o P;) (35)

$: 0

It willnowhe proved that system (33) has solutions of the form of
equations (34) and (35) with arbitrarily preassigned tiitial values of

—.
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.
In order to simplify the necesssry computations the following

al)bre$iationswill be used:

The first equation of system (33) will nowbe written in an
explicit form. A simple computation shows that

and, since

()o (51)s

‘s =

(52)s o

the first of equations (33) is equivalent to the p~ir of scalar
e~uations

(36)

The integration of the system of differential equations, equa–
tions (36), canbe reduced to the integration of only one equation with
one unknown function. As was observed before, the determinant of D,
given here by b(l))=%152, is constant. This can %e verified again
by multiplying the first of equations (36) by 82 and the second by 51
and adding the resulting equations. Thik leads to (5%2)s = O, which
shows the constancy of 5(D) = 4182. If the abbreviation -152 = a
is used, the first equation of system (36) becomes

_.—. .—------- - .—..—-—--- — - ... . . ... . _— _ . . —.—. --- _ ——. — .—.—.. ...
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(d).+,2(,1)2+a,l = o (37)

This is a differential equation of first order in 5L alone and is of
the Riccati type. If a # O, the second of equations (36) is automati–

tally satisfied by

All this can easily

After equation
determined from the
tion yields

D13B-HDB=

52 =-. If a= O hut 51 + 0, then 52 = O.
51

be verified by the reader.

(37) - been integrated, ~1 and ~2 are to be
second equation of system (33). A simle COWU~-

(0

and the equations sought are therefore

/

}

(,1)s+(w -52,9,1=o 0

(38)

(J32)S,-(’1: - ‘2A~2 = 0
.

A comparisonof system (38)withsystem (36)shows that & the
general case where a + O, that is, wher~d $ both @ and 52 exe not

zero, J31 Ond 51 ad dso P2 difter only by a constant

factor, that is,

d =~lcl
‘( d, C*= constant

= ~2c2 )
P2 1 (39)

.

—

.

——— .—— ———

.
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This is in agreement with a result obtained before, which showed that
in general, if 8(D) # O, B is o~tained from D by multiplying the
latter by a constant matrix from the right. Indeed, system (39) can be
expressed in the form

In the.degenerate case
but 82 #-0, equations

()
C2 o

B=D

o c1

where a = O end, for exam@e,
(39) have to be replaced by

-1

Pl==#

(cl, C2 constent)

P2
= ~2c2

/

If 51 2
and 5 are both zero, equations (39) are

by

j32= C2

as can be easily verified.
are known, the ~~s can be
gration.

.

(J C2
> constsnt )

.}

(39a)

to be replaced

(39b)

The essential result is that, once the b~s
written down immediately without any int~

. .

—— . ...—----- _____ ___
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The differatial equatio= h A and m2 will now %e ‘derived.
The terms occurring in the third of equations (33) are

.

The differential equations ere therefore given by

,

()ml 12 f&+51q2&=o
s – l#P2 – T&J + p q

&

()~2 s – ?12@ – Y&u.? + Pw$+ 52q%!J2= o

.

—.—

(40)

.

——
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As before, the system of equations (40) can be reduced to one equation
of the Riccati type in @ or U2. As was found before, the determi–e,
nant 8(W) = &2 is constant. This canbe verified immediately by

multiplying the first of equations (40) by 02 and the second by @

and adding. The result is that c$m2 +uj~ U1 = O or that (&2)s = O

which implies that &2 = b is a constant. The constant b is

different from zero because it was always assumed that W is non-

singular. Re@acing m2 in the first of equations (40) by ~ yields
d

()J s + $(092+(81,2-5+)(IJ- ,1,2= o (41)

*
The second of equations (40) is an automatic corisequenceof equa-

tion (41). This may be verifiedby replacing & by CD2= ~
&

in the

second equation of system (40). Equation (41) is of the Riccati type
as was asserted before.

3. Equations Transformable

Equations or into Those

into the CauchyAiemann

Corresponding to the

Wave or Tricomi-Equation

The essential objective of this investigation is to find equations
of state, or the corresponding density-speed relations, which lead to
equations transformable into a well—known canonical.form. In view of
‘this,it is of particular interest to study those equations which can

. be transformed into the Cauchy-Riememn equations or into those corre-
sponding to the wave or Tricomi equation by transformations discussed
in the preceding section. Corresponding to each of these three
problems, the matrix H of equation (27) becomes, respectively,

In each case it is required to solve equations (36), (38), and (40),
and 72 from the chosen canonical form havewhere the values of @

been substituted. Since all of equations (36), (38), and (4o) are of
the first order, their general solution depends on six arbitrary

.

.

-- . .--——.-.-.. -.— .-...—...._._ ._-. _____ _ __ ——— —— .. .. ._ __ —.—,.... ... —.—- .. .. . ...—___
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constants or, in other words, there exists a six–parameter family of
transformations leading to the given canonical form. It would be
incorrect to conclude, however, that the equations transformable into
the given canonical formal-so constitute a six-parameter family.
Indeed it was already observed that if B and W are multipliedby
the seineconstant matrix from the right, the resulting matrices together
with the unsltered D again,represent a solution of equations (36),
(38), md(ko). In yarticuler this matrix factor may be chosen as a
constant scalar multiple CI of the unit matrix I.
however, (CW)–lH(CW) =

In this case,
w_lHW so that-the corres~onding differential

equations are identical. This shows that, in general, a five-parameter
family of equations canbe transformed into a given canonical form. “

Consider first the case where the given canonical form is that of
the Cauchy-Riemann e uations.

8
The values of ql and V2 are

then ql = 1 and rj =–1. Equations (37) and (41), to which equa-
tions (36) and (4o) were previously reduced, now%ecome

# ()-t512+a=0
s

(J –
s +(+2 - (d+ 5+UJ-f+= o

.

(43)

(44)

.

If the constant a is chosen different from zero, the substitutions

into equation (44) of 52 = – ~, ~1 = 51C1, and B2 = 52C2 are to

be made with C1 snd C2 as “mbitr~ constents. In the degenerate
case where a = O, the substitutions to be performed me given by
equations (39a) or (39b) of the preceding section.

Equation (43) cm be solved m te~ of element- functionsj but
equation (44), it seems, cannot be solved in general in an elementary
way. llnorder to obtain solutions-expr~ssible h terms of elementary

.

f&ctions, the restriction that 5L = 52 = O will
According to equation (39b), @ end 132 are then
equation (44) reduces to

al
()

_Alm12-_~2=o
s

now be made.
constants, and

(45) ,

(xl _ #
b )

,A2=P2

—.— —- –——-——. .-
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Equation (45)
easily verify

can be solved by elementary methods. and the reader
the following statements: -

.

(a) If Al snd X2 have different signs, the solutions
(45) have the form

ml = Acoth a(S – So) or U1 = Atanha(s –s.)

arbitrary constants A, a, and So.

of equa-

(46)

(b) If hl end X2 have the sane.sign, the solutions me of
the form

with

with

J = Atari a(s – so) (47)

arbitrary constants A, a, and so.

(c) If X2 or X1 is zero, the solutions have the form

J. 1 1or CD-m =Os+p

constant values a and P.

(48)

27

The computation of the differential equations ~s = W–%WCt which
are transformable into the Cauchy~iemann differential equations follows
immediately. A simple computation

( )(3°0
w–%? =

o 1
~ ‘1

and the equations therefore always

E5 = (.qt

.

shows that

have the form

( )]‘=&
“uJ- (49)

---- ---=----_.. —,_... ..- .-. — .———.— . .— .—— . ... .——_—
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Since Ju? = b
takes on one of

CD= c

u.)= c

NACA TN 2065

is a constant, the function m(s) in system (49)
the following forms:

7
tsnh%(s – so) or .U = C coth2a~s – SO)

tsn2c@ – so) (50)

J
where C in the first two of equations (50)“is also sn arbitrary
constant. Each formula of system (50) gives a three– or two–
parsmeter fsmily of differential equations of the form of equa–
tions (49) which con le trsmformed into the Cauchy-Riemannn
differential equations.

Similar considerations lead to differential equations which can be
transformed into those connected with the wave equation
(where q1=V2=1). Since these equations
manner com@etely analogous to the preceding
final result will be stated:

All equations of the form

with am o
tions (50),
equation.

can-be computed in a
computation, only the

(51)

again representedby one of the functions given by equa–
can he transformed into equations connected with the wave

The study of equatiob transformable into a form corresponding to
the !l%icomiequation (where ql-= 1, q2 = -s) is of particular interest
since it can be utilized in the investigation of transonic flows. As
in the previous discussion, only the case & = 52 = O will be consid-
ered in more detail. Equation (41) here takes on the following form:

J
s— ()x% J-2”–

(#=@,L2b

,
(52)

———— -— .—
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where X1 and L2 are arbitrary
express the solutions of e uation

3except when Al = O or x = O.

If’ X.l= 0, the solutions of

1

‘/,

constants. It seems impossible to
(52) in terms of elementary functions

equation

(.Jf= cLs+j3

where a and ~ are arbitrary constants.

If

where a

The
equation
that

~2 = O the solutions ere given by

and P are arbitrsry

differential equation

(27) can here again be

=—as21+p
constants.

(5P) are gimn by

(53)

(54)

[s =W_%W~t which is transformed into
computed immediately, and it is seen

The equations therefore have the form

where u.)may take on one of the forms
b’

.

29

(55) ‘
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(56)

with ar%itrary constants a and ~, according as d is given -by
expression (53) or (54).

Equations of the form of equations (55) may be
at times, more suitable form by a transformation of
variables given by

S* = S*(S)

t*=t
1

brought into an,
the independent

(57)

This transformation will, if-suitably chosen, simplify the first of
equations (55) to the form ES* = Tit*. The transfomned equations sre

The desired simplification

(58)

is then ‘achievedif % = 1, that is, if

[
U(S) ds + Constant (59)

Equations (58) then take on the form

ES*=Tt*

75*= --cD*(s*)gt*.1
where

~*(s*). _E-
(CD)2

—. —.— — ——— —-—.——

(60)
.

.

,,

.

(61)
.
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If u is given by the first of equations (56), the resultiu transfo~
mation is

s*. ~ s
+

B(US + p)

A further simple computation, which may

.-. .

Constanti (62).

be left to the reader, yields

(J,)*(s*)= & pqs* – SO*)

p T a,(s* - SO*)]5
(63)

where SO* is an ar%itrary constant. If m is given by the second of
equations (56), the form obtained for u*(s*) becomes more complicated.
Since the latter form is not used in what follows, it will not he
written down.

4. Density-peedR elations Leading to Systems of Differential

Equations Transformable into the Canonical Forms of
\

the Preceding Section

If the linearized equation of state p =–~+ b is ~ed as ~

approximation to the actual equation of state, {hen the potential
function @ end the stream function ~ satisfy the cauchy~ie~
differential equations in the hodograph plane, after suitable inde-
pendent variables have been chosen. The results of the preceding
sections supply a method for constructing-moregeneral equations of
state, or the corresponding relations between density p and speed q,
where a transition to a simple cenonical form is made possible. This
is achievedhy conibiningthe transformations discussed in the preceding
sections with suitable simple coordinate transformations in the hodo-
graph plane.

If the polar coordinates q and @ are used in the hodograph
plane, the equations in @ and ~ sre

(64)

-. —_... ... .. . _______..+ ____ _______ ______ -_,__ —.—— -..—.-. . . —
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The local Mach ntier M and the density
alone and, according to Bernoulli’s law,

.

Equations (64) c% be bought into a
coordinate transformation of the form

NACATN 2065

p are functions of q

(65)

more suitable form by a

s = s(q)
1

}
(66)

t=-e J
It may be noted here that the change in the sign of e is introduced
only to eliminate the minus sign from the first of equations (64).

The following considerationswill first be restricted to the sub–
sonic region (M <l), where equations (64) are of elliptic type. It iS
well known that equations (64) can then be brought into the symmetric
form of equatio~ (49) by a suitable transformation of the form of
equations (66). Indeed after such a transformation, equations (64)
become

$s=l–M2&tt
Pq 1

!’ (67)

Equations (67) are made symmetric by the choice of a transformation,
equations (66), which has the property that

l– M2dq qds—= ——

P!l as P dq

This leads to the equation

\

(68)

(69)

4

.

.

—._.——.— ..——
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or

33

(70)

which implies that

s =

I

=.+ constant
~

(71)

The function m(s) which appears in the now symmetrized form of equa-
tions (67)

$s =u(s)l$t 1
$s =-u&4t J

is given by

(72)

(73)

where the righ~hsnd term is to be thought of as e~ressed in terms
of s, as given by equation (71).

A cotiination of these results with those of the precedi~ section
allows the construction of such density-speed relations which lead to
equations transformable into the Cauchy%iemann equations. Each formula
in system (50) represents a three=parameter family of functions 0(s)
for which equations (49) can be transformed into the Cauchy~iemann
equations. If the function m(s) of equation (73) is now.identified
with a function of one of the families, equations (50), the equation “
thus obtained together with equation (70) represents a system of
ordinary differential equations of first order in p and s as
functions of q. By solving this system, with unrestricted values of
the involved three parameters, a five-parameter family of pairs of
functions P = P(q) and s = s(q) is obtained. The functions p = p(q)
are then the ones sought. Since the addition of a constant to s(q)
(with p(q) left unchanged) leads again to a solution of the diffe~
ential system, a four=parameter family of speed-density relations,
which leads to equations transformable into the Cauchy~iemann equa—
tions, is thus obtained. ,

-———-. .—..- .—...- .—— —...—-— ———-—-.-.—---—. —.. . .....—_—. .._. .—..—=. —= - ..__ —___ ._._.._ —.-
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A constant function is included as a special case of the “
functions m(s) givenly system (50). It is to be expected that the
functions u)(s)= Constant will lead to the density+peed relation
which corresponds to the linearized pressurevolume relation. This
will now be verified.

If, instead of q,

K =log q“ (74)

is introduced as the independent mriahle and the constant & is
called c, equation (73) can le written in the form

(75)

The integration of equation (75) ly the method of separation of mri–
ables leads to the solution

“k== (76)
.

where’ b is a constant, as the reader will easily verify.
.

A substitution of function (76) into Bezmoul.litsequation finally
yields

-(bc)a
P = — + constant

P
(77)

which is the linearized pressurevolume relation.

For a general function O(S) the integration of the system
consisting of equations (70) and (73) can, by the elimination of p,
be reduced to an integration of a differential equation of second order
in s(q) alone. Indeed, equation (73) shows that

ds—

P
_ d~ (78)
m(s)

which, when substituted into equation

d2s
()

d~3+ 1
—= —
~g2 m u.)(s)

(70), leads to

()

dmas2 as—. ——
a.sti M

(79)

.

——— –——

.
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after a simple computation. If any solution of e@ation (79) is substit-
uted into equation (78), a desired function p = p(q) is obtained.

Equation (79) becomes essentially simpler if the roles of the inde-
pendent variable ~ and the dependent variable s are interchanged.
If the abbreviation

al’c
T=—

as

is introduced into equation (79), a simple computation yields

dT T2 dloguT, ~—= —— —
ds as,

.
my solution of the Riccati type equation, equation (81), gives a
possible function ~ = IC(S) when integrated.

(80)

(81)

The function u corresponding to the real equation of state has
a special analytic character, which is useful to know in the discussion
of approximating functions of m. The pressure-density relation of gas
dynamics, upon which o(s) depends, is of the form p = apY + b,
where a, %, and y axe constants and y > 1. If dimensionless
variables exe introduced such that the de~ity and velocity of sound
are both 1 at q = 0, the following formulas are obtained:

1
-1.

P
.(

= l–~;
‘)

1 2 7–1
‘(7 # 1)

42
p=ez (7 = 1)

and

M?= ~2
1–7 –12

2

In addition, the function m is given by

(7 + 1)

(82)

(83)

(84)

.

(85)

.

—.—— .— . --— .—. .+—.. —____ -.._.._ .______ .--— -—— ...— —-.. .—..— -----
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and

.=me$ (,”=1)

These formulas show that all three functions
analytic functions of q2 and can be represented
which converge in the whole subsonic region q2 <

the power scries for m begins with the terms

m=l-
7+14+
,~q...

Formula (71) shows further tha~ if a is defined

then the latter function
in q*. If the constant
chosen, the power series

NACATN 2065

.
.

~, M2, and o are
by2power series in q2

In particular,~

as

(86)

4

(87)

can also be represented by a power series
of integration in equation (71) is suitably
for a begins with the terms

.

*4
a=q2 ——* +. . .. (88)

From a cotiination of equations (86) end (88), it follows that u can
be representedby a power series in a starting with the terms

CD =1- Z&$+... (89)

The question of how far the function U(S) canbe approximatedby
a function of the family, equations (sO), can now be discussed. If the
approximation is desired
best possible adjustment
tion ~ = c tanh*a(s –

for a range of q starting with q = O, the
at q = O is achieved with a func-
So), with the following choice of the constants:

c1=

a= 2

1 (90) .

.

,,

. 4.4s0 _ 7 + 1.— I
8 J

— .— ..— —.
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This shows that

()1
y+l

-—2 2
Y=

32

~+Y+.12
32 u

37

(91)

The speed~ensity relations which correspond to m . al
have nowto be studied. In order to find these relations, it is neces~ay tht

the function al be substituted for u in equation (81). If a solu-
tion of the resulting differential equation is integrated with respect
to s, a possible “s-~” relation is obtained. A desired speed~ensity
relation is then obtained by a subsequent substitution into
equation (78).

It is convenient here to use the qusntity c . e2s of equa–
tion (87) as the independent vsriable instead of s. Equation (81.)
in which m has %een replaced by ~, then takes on the form .$

.

z_Q#-
d-r

2U—=T2+ 2
T

du

()

7+12=4
1- —

32

–1 (92)

That particular solution T1 which allows for the best approxi—
mation to the “real” speed-density,relation,equation (82) or (83),
at q = O is now to be determined from among the infinitely many solu–
tions of equation (92).

It can easily be deduced from equation (88) that the function T

which corresponds to the real equation of state has a power-series
expansion in a starting with the terms

T =l+$J+... (931

It will be shown in the appendix that equatian (92) has one and only
one snalytic solution in the neighborhood of a =,0 which satisfies
the initial conditions

.- .—. . ...—.—-—. _______ ..—. ___________ ___ -—- — .. . ..—----.. .-_.——__—___ . .
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.

(94)for 6=0

1

T=l

dT _

da c1

where
c1

is an arbitrary.constant.

The particular solution of equation (92) corresponding to c1 = ~

therefore gives the best possible adaptation to the red equation of
state at q = O. The s–~ relation is finally obtained by an inte-
gration of this T with respect to s. The constant of integration

()

has to be adjusted such that ~ = 1 since t~s is the case with
dqz *.()

the real equation of state as shownby equation (88).

The discussed approximationmethod is not the only possible one.
One may, for instance, introduce the requirement that the approximating
function q(s) coincide with the function m, wtich is deduced from
the real equation of state, at three preassigned points. Numerical
results of the mentioned approximationswill Ye discussed at the end of
this section.

The foregoing investigation has so far been restricted to subsonic
flows. and will now be extended to the transonic region.’ The canonical
form,”equations (49), must now be ab~doned s~ce it Cm ~ise only for
an elliptic–type system of differential
replaced, as is usual for a mixed flow,
second equation of system (67) becomes

equations. This form will be
by a new one for which the

f$t‘ -’JS (95)

This is achievedby
the condition that

or

a transformation, equations (66), which satisfies

The first equation of system (67) takes on the form

@s = u*(s)lJrt

(96)

(97)

(98)

_ ..—.
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with

In the case where the
then o*(s) becomes

or

~+qdp

clJ*(s) l-#=— = ~ dq
~2 ~2

.
(99)

speed+ensity relation, equation (82), is used,

,1–
7+12

O*(S) =
7+1 (7 # 1)

6-43

U*(S)‘(-2P2 (7=1)

(loo)

(100a)

Remark.– A comparison of equations (100) and (85) shows ttit in

the subsonic region and for equal.vslues of q the functio~ U* is
the square of m. This relation could also have been obtained by a
consideration of imariants of the differential equations under coordin-
ate trsnsformations.

The following procedure is now parallel to that followed in the
su%sonic region. It is desired to construct speed+ensity relations
which lead to equations transformable into those connected with the
Tricomi equation. This is achieyed by identifying the function U* of
equation (99)with a function of formula (63) in which s* is now
replaced by s. Equations (96) and (99) represent then a system of two
ordinery differential equations of first order in p and s as func–
tions of q or ~ = log q. Again this system canbe reduced to a
differential equation of second order in s as a function of R IN

substituting p = ~ from equation (96)into
is

U1l. equation (99). The r&ult

o (101)

.

-. 4.-.—- .. —... — -— -.. . .—— —~ .. -—-
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“This again is simplified by choosing s as the

If the substitution of -T= ~ is p“erformed as
as

reduces to

dT

z

Sh~uld T = $ be used as the
would reduce to

independent variable.

before, equation (101)

(102)

t

dependent variable, then equation (102)

d~ ~&2 _ ~—=
*

(102:)

The question of choosing the most suitable approximation func-
tion u*, call it 0*1, from ~~ng the functions of for~a (63)> will
now be discussed. lm approximation is desired in the neighborhood of

r
the sonic speed ~ = —. Without loss of generality it.can be

7+1
assumed that the value of s corresponding to this sonic speed is zero.
The
The
by
are

constant sfi in formula (63) must then also be set equal to zero.
best approx”~tion of the-function u*(s)
m*l(s) will be achieved if the remaini5g
so chosen that

of formula (100)
two constants a and’ ~

(%)s=;(%)s=O

(295=0=(!)5=0
By the use of for~as (loo)> (97)>and (82)>a
yields .

(103)

,

simple computation

(104)

.

.— .
.
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A comparison with formula (63) written in the form

U+6 .— as
1

(1–bsp ‘

shows that a and h are

7+2

()a=py+l~
2

b = *(27+ 5)(+)*

I

41

(105)

(106)

After the computation of U*I(s) has been completed, equation (102)
must be solved. The initial condition to be satisfied is obtained from
the condition that the relation between s and q and the relation
obtained from the real equation of state must agree at the sonic
speed q = qs up to the second order.e

Equation (97) shows that

end the initial

tution of q2 A

1
T

1=-=
1-P

condition for

CI.2= =-
7+1”

(107)

(1- .Z+qp g)
equation (102) is obtained by a substi—

This yields the condition that

1

T = ()2s27-1 for S=o
2 (108)

By an integration of the corresponding solution of equation (102)
with respect to s, the function K = K(S) is obtained. The constant ‘
of integration must again be adjusted to the real equation of state.
This requires that

K= ~ log A fors=O
y+l (109)

-- . .- .———-_ ._. ___ .._. —.—____ -—— —-—— -— .—— . ... ..s-.—__——_—— - ____ ——.. —...
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The previous considerations contain constructions of approximating
speed+ensity relations in the subsonic and transonic regions leading
to simplified equations of motion. A similar procedure would lead to
approximation formulas in a pwe supersonic region. Transformations
which lead to the canonical form connected with the wave equation would
then have to be used. Since the discussion in such a case would be
absolutely parallel to the one for the subsonic region, it is omitted
here.

In order to have a picture of the approximations which can be
achieved, numerical computations have been made in the subsonic and
transonic cases. The results are given in tables 1 and 2 and illus-
trated in figures 1 and 2, respectively.

.

Table 1 contains the tabulation of four functicms o, ~, ~,
and m . The first one is the function giwnby formula (85)
with ~=1.405. Theveriable

(110)

9

is chosen as the independent variable instead of a. The variable al
is normalized by the chosen constant factor so that it ranges in the
totsl subsonic region from O to 1. The values 08 u are taken from
reference 4. All.the functions al, q, and m

?
are approximating

functions of m of the form of the first of equa ions (50) and all can
be written in the form

(111)

The function ~ is the approximating function given by formula (91),
and it gives the best yossible approximation to u at q = O. The
functions ~
equation “(l-l-l)

u=% for CT1=

and CDq are interpolation functions of the form of
detern&ned%y the conditions

O(M=O), al=0.63(M=0.4702),

~=O(M=O), alm=u for a
3

=0.63(M=0.4702),

=d C1=0.80(M=0.63U)

(1.12a)

and U1=0.96(M= 0.8698)

(l12b)

.

.—- —
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M the range, for example, from CT1= O to crl= 0.80, which corre-

sponds to a range of M from O to 0.6344, the deviation of

%
from o

is never greater than one unit of the third decimal place,-tit the
exception of the last entry where the deviation becomes three units of
the third decimal.place.

Table 2 contains the tabulation of the function CD* given by
formula (100) which occurs in the Mscussion of the transonic region and
the approximation function U*l given by formula (105), for the
value y = 1.5. The approximation of U* usually used is that given
by the linear function u.)*2(s)giving the tangent of the u*-curve at
the zero point which corresponds to the sonic speed. For comparison,
all three functions U*, U* ,1 ma U*p are represented in figure 2.

It is seen that down to s = +.22, which corresponds to a Mach number
of about M = 0.70, U*l gives a f= better approximation to O*

‘ than U.)*2.Also in the supersonic region up to, for example, s = 0.11,
whi,chcorresponds to a Mach number M = 1.29, the function CD*~ is
strongly superior to m*2.

CONCLUDINGREMARKS

The present investigation contains the study of a class of trans–
formations of the Baecklund t~e which transform systems of partial
differential equations into each other where simple point transformations
ordinarily fail. .Corresponding solutions of the two ’systemsare derived
from each other by the solving of a system of ordinary differential
equations, a process, which, both from a theoretical and practical point
of view, is essentially simpler thsn solving a system of partial diffe~
ential equations. An application of this study to gas dynamics leads
to a five-psrameter family of speed-density relations for which the

,

corresponding equations for the stream and potential functions can be
transformed into
with the wave or

The methods
as follows.

the Cauchy~iemann equations or into those connected
Tricomi equation.

deveioped allow for a far-reaching extension explained

The class of transformations studied does not form a &oup; that
is, a transformation obtained by a composition of two such transfor-
mations is in general.not contained in the original class of transfor-
mations. This represents an advantage, since the process of composi–
tion can be repeated arbitrarily often, and the class of transformations
can be extended more and more. This iteration process allows the
construction of a family of speed~ensity relations, which contain
arbitrarily many parameters and which lead to equations transfor~ble
into one of the three canonical forms used.

. .— --- -— --—--- - .._._. —.——-.. . ...= —— —-.._____
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Ii is of great theoretical and practical interest to determine all
systems of partial differmtial equations whose form can he brought
arbitrarily close to one of three canonical forms by such composite
trausformatiens.

Syracuse University
Syracuse, N. Y., October 27, 1947

,
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APPm’IX

PROOFSOF THEOREM3

The theorem used in section 4 will be proved
generalized form:

45

.

in the following

Theorem 1. Consider the differential.equation

dT
.-

2RG=
T2 + k(a)T –1 (Al)

where the coefficient k(u) is an analytic function of a in the
neighborhood a = O and has-a zero at c = O of at least the
second order. The power-series expansion of k(u) is therefore
of the form

k(a) = qu2 + a3cr3+ . . . (A2)

If k(a) satisfies these conditions,
of equation (Al), analytic about a =
initial conditions

then there exists a solution
O, which satisfies the

where c1 is arbitrary.

Proof.– The required
of the form

T =

solution must be

1+C1U+C22+

(A3)

expansible in a power series

. . . (A4)

. —-.__, ——— .--— _.. -.—— .— .. ..-— —-— -—.— . . ——— ~—-———.-~ . . ——
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By substituting series (A4) into equation (Al) and comparing coeffi–
cients of equal powers on both sides of equation (M.), the relation

2065

.

n-1
2(n–l)cn =

Z Cicn-i + 9 aicn-i + %
i=l - i=l

(A5)

(n

is obtained, where al = O.

Ec&tion (As) represents
successive computation of all

=2,3, ...)

a recurrence formula which allows for a
coefficients c+ in series (A4). It will

be proved now that series (A4)-has a positive’radius of convergence.
Series (A2) has a majorant of the form

A#m-)=l_w==zF+=@ +... (A6)

having a radius of convergence which can be assumed arbitrarily close
to that of series (A2).

The values of the coefficients in series (A6) are -

Zi.= Aai4(i =2, 3, . . .), ZZ1=O1 (A7)

If in formula (A5) the ~:S are replacedby
factor n – 1 on the left side is dropped, a
formula

2%=~%%-i, ‘-1+> EiFn_i + ~
i=l i=l

the ~i:s ~d the
modified.recurrence

(n =2,3,...) (A8)

is obtained, which again determines ~ uniquely once ~ has been
chosen.

If a value for ~ is chosen such that

c1 sq (A9)

. .

..

.

—.—— —— .-
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then a comparison of formulas (A5) and (A8) shows immediately that

ICn $.% (n=l,2, ...) (Ale)

1% is, however, easy to show that the series

~cl+ i@+... (All)

.
has a positive radius of convergence. Indeed just as the Cnts, given by’
recurrence formula (A5), are the coefficients of a solution to the
differential equation, equation (Al), equation (A8) expresses the
requirement that the ~$s are the coefficients of a generating
function

.

which satisfies the algebraic relation

or

and which vanishes

7=1-

But function (A15)
positive radius of

for u = O. This determines T to be

(A13)

(A14)

can be expanded into a power series in a ‘with a
convergencee. This completes the proof of theorem 1.

0
.. -—.- ____ .__. ..__

——..— ~--- -—— . . ..—.._
—. - ---—— —_______ . . .. -=.-—
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It is of interest to know how fer the solution T(a) of equa-
tion (Al) satisfying initial conditions (A3) is representedby the
power series, series (A4). A definite answer can he given under the
restrictive conditions .

%-@ (n= *’S’”””) (&L6)

It will he shown later that these conditions are fulfilled when equa-
tion (81) contains an m corresponding to the real equation of states
provided that y Z 1, or when it contains an a = al, a function which
was used as an approximation to the former and given by equation (91).
The following theorem is given in answer to the foregoing

Theorem 2. If the restrictive conditions (A3.6)
satisfied and one lnmws that the solution T exists
o~(J<~o, then the radius of convergence of series

least equal to Uo.

question:

andl(A17) are.
in a range
(A4) is at

Proof.– Now recurrence formula (A5) shows immediately that

c >() (n=l,2,3, ...)
n’

(M.8) :

~ immetiate consequence of inequalities (A18) iS ttit if U1 represents
the radius of convergence of series (A4), all derivatives of T(u) in
the interval O ~ a< al me non-ega.ti~e. An ~~fiic continuation
by power series shows further that this is true not only for O ~ a< al
but in the whole interval O ~ a < co.

A theorem of S. Bernstein (reference 12) is now-used to complete
the proof. Bernstein’s theorem states:”

If a function T(CT) has derivatives of arbitrarily high
order and all are nonnegative in the interval O S a < a. (the
function is then sa$d to be absolutely monotonic in the interval)
then it is analytic there and can be representedby a power series
in cr whose radius of convergence is at least equal to Uo.

.

,

——. —.-.. — — . ——.——.——- —— — . —— ...
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In the special cases considered in section 4, the value of c1
was equal to ~. Condition (A17) is therefore satisfied. But condi–

tion (u6) is also fulfilled. TMs is eqressed in

Theorem 3. Co?dition (~6) is satisfied both

for k(s) =–~ log O, where u) is representedby formula (85)

the
for

with 7 ~ 1 and for kl(s) =–~ log u)~

formula (91).

with ml gimnby

Proof.– That the theorem is true for kl is immediately seen from

expression for kl in equation (92). In order to verify it
k(s), it must be shown that the function k and all its deriva-

tives with respect to

Consider first k

k

According to equations

cs are non+aegative.

itself:

(85)~d (71),

d log (l)_7+l ~2
—

dq2 4

(
l-y

q)(
–12 ~ 7+12
2 2 q)

r1–7 :1*
dq2 *q* 2—=
as

~ 7+lq*
2

(Jug)

(A20)

(A21)

Functions (A20) snd (A21) have power+eries expansions in q2 with non–
negative coefficients. This is immediately clear for function (A20).
In order to prove it for function (A21), consider

.- . . ..- .--a._.__.=_ _....__________--+___ ._._ —— _. ... .._ ____ —...-. --__________
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ml the coefficients of series (A22)
since 7 ~ 1, and therefore those of
and those of equation (A19) are also
is non-negative.

It will now be shown that

are certainly
the expansion
non~egative.

NACA

nonnegative
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of fun&ion (AZ)
Thus the function k

(@3)

is also-non-egative. The first two factors of the right-hand metier
2 with non-negativeof equation (A23) have power-series expansions in q

coefficients. It will nowbe sho~m that ~, which is obtained as a

function of. q2 from equation (~)j has an expexmion of the form

(111+.=—
CT ~2

all of whose coefficients yn

71~2+y2q4+ . . .
)

. (A24)

prove that all the coefficients

non—~ositive with the exception

1 – Y+qz

are nonnegative. It is sufficient to

/

l–
7+12

of the expsnsion of 1 2 are

of the first. Indeed,

2

–12
=AE+)n-%==l-u

l–y
2

where sll the coefficients of the expansion for U ‘srenon+negative.
mow

2e.yidentlyinvolves ody non—positive coefficients in q with the
exception 02 the first term 1. By a multiplication of the series
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In the special cases considered in section 4, the v~ue of Cl’
was equal to ~. Condition (A17) is therefore satisfied. But condi–

tion (~6) is also fulfilled. This is expressed in

Theorem I. Condition (~6) is satisfied both ~

for k(s) =–~ logo, where u is representedby formda (85)

,with 7 Z 1 and for kl(s) =–& logml with ml givenby

formula (91).

proof..-That the theorem is true for kl is immediately seen from

the’expression for kl in equation (92). In order to verify it
for k(s), it must be shown that the function k and all its deriva–
tives with respect to IS are nonnegative.

Consider first k itself: ,

.

.,

.

k _ dlog(l) d log u dq2-—— =-
ds dq2 ~

According to equations (85) and (71),

d log u _7+l ~2

dq2 4

(
l–y

~)(
–12 ~ —
2

7+12
2 ~)

49

(A19)“

(A20)

/’
1–7 –12

dq2 2q2 2—=
ds

~ 7+lq2
2.

(A21)

Functions (A20) and (A21) have power-cries expansions in q2 tith non-
negative coefficients. This is immediately clesr for function (A20).
In order to prove it for function (A21), consider

~ +~=www~lq~ ‘&2)

.
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All the coefficients of series (AZ2)
since y > 1, and therefore those of
and those of equation (A19) are also
is nonnegative.
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are certainly ncm=negative

the expansion of function (A21)

non-negative. Thus the function k

It will nowbe shown that

d-k dk dq2 1—= —. ——
da dq2 ds 2a

is slso.nonnegative. The first two factors of the rightihand member
of equation (A23) have power-series expansions in q2 with non~egative

coefficients. It ~til.lnowle shown that >, wtich iS obtained as a

function of q2 from equation (~), has am expansion of the form

all of whose coefficients 7n are

prove that all the coefficients of

non-positive with the exception of

where all
Now

e.yident~
exception

1–Y*

= ‘-:
1–7 –12 n.1

c1

+72q4+. . .
)

(A24)

non~egative.

the expansion

It is sufficient

of ,Fvpy
the first. Indeed,

to -

are

the coefficients of the expansion for U sxe nonnegative.

Ll–
7+12

2

(k
=G-iu=fJ-1) *

~ 7-lq2 n=Cl n
2

involves o~ non-po31tiwe
of the first term 1. By a

coefficients in q2 with the
multiplication of the series

.

.

.

.
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expansions of the factors in

the result is obtained that

negative coefficients and is

51

~~ right-hand mefier of equations-(A23),

~ b a expansion in q2 with non–
therefore non-megative.

A

By a continuation of these considerations in the same manner it
can evidently be -provedthat all derivatives of k with respect to G
have power–series expansions in ~2 with non-negative coefficients and
are tharefore non-negative.



52 NACA ,YN2065

1. Chaplygin, S. A.: On Gas “Jets. Scientific Memoirs, Moscow Univ.,
Math. Phys. Sec., VOI. 21, 1902, PP. 1–121. (Eng. translation
published lyBrown Univ., 194.4;also NACATM 1063, 1944.) ~

2. VonK&&, Th.: CompressibilityXffects in Aerodynamics. Jour.
Aero. Sci., vol. 8, no. 9, ‘July1941, pp. 337–356.

3. Tsien, Hsu-hen: Two-Dimensiotil Subsonic Flow of Compressible
Fluids. Jour. Aero. Sci., vol. 6, no. 10, Aug. 1939, pp. 399-407..

4. Bers, Lipman: h a.Method of Constructing Tw&Dimensional Subsonic
Compressible Flows around Closed Profiles. NACATN 969, 1945.

5.Bers, Lipman: On the Circulato~ Subsonic Flow of a Compressible
Fluid past a Circular Cylinder. NACA ‘IN970, 1945.

6.Bersj Lipnan: Velocity Distribution on Wing Sections of Arbitrary
Shape in Compressible Potential Flow. I –Symmetric Flows

. Obeying the Simplified Density-Speed Relation. NACA!CN 1006, 1946.

7. Gelbart,Abe: On Subsonic Compressible Flows by a Method of Corr&
spondence; I –Methods for.Obtaining Subsonic Circulatory
Compressible Flows about Tw@imensional Bodies. NACA TN 1170,
1947.

8. Bartnoff,’Shepxrd~ and Gelbart, Abe: On Subsonic Compressible Flows
by a Method of Correspondence. II – Applicaticm of Methods to
Studies of Flow with Circulation about a Circukm Cylinder.
NACATN 1171, 1947.

9. Lin, C. C.: “Onan Iktension of the Von K&&n+sien Method to Two-
Dimensional Subsonic Flows with Circulation around Closed Profiles.
Quart. Appl. Math., vol. IV, no. 3, Oct. 1946.

10. Dsrboux, G&ton: Le$ons sur la th40rie gdn&ale des surfaces.
T. III. Gauthier-Vill.ars(Paris), 1894, pp. 43&444.

.
Xl. Weyl, Hermann: Mathematische Analyse des Raumproblems. J. Springer

(Berlin), 1923, pp. 66-68.

12. Widder, David Vernon: The Laplace Transform. Princeton Math. Ser.,
vol. 6, princeton Univ. press, 1941, I. 146.

.

-— — —.—— . ———-



NACATN 2065~ 53

.

[
cl)gimn by

TABIX 1.- WWES OF u, + ~? AND CD
3

al
equation(85),where ~ = es,relatimshipbetween eandqgivan

,()1-0XT1B2
by equationa(~) =a (W), ma 7 = 1.405.~ ma ~ obtainaafrom

1 + IxuJ
whichis an approximationformulaof thefirstof equations(5o). Caus~ts cc
and 13 evsAmte& for al = 0.63 (Machnumber,0.4702)and al= 0.80 (Mach

T al = 0.63 (l&h number,0.4702)ad al = 0.96number>0.6344)h ~ &a
(Machmmiber,o-8698)in ~

‘1

0.02
--,--
.16
.18
.20

.22

.24

.26

.28

.30

.32

.34

.36

.38

.40

.42

.44

.46

.48

.50

.52

.54

.56
..58
.60

.62

.64

.66

.613

.70

:Z
.76
.78
.80

:E
.86
.88
.90

:$
.96
.98
1.00

u)

1.0000

1.0000
.9999
.9999

.9998

.9998

.9997

.9996

.9994

.9992

.9590

.9!387

.9984

.9980

.9975

.9968

.9961

.9953

.9944

.9933

.9920

.9905

.9888

.9868

.9847

.9818

.9791

.9749

.9709

.9660

.9602

.9535

.9455

.9350

.9238 .

.9113

.8948

.8740

.8492

.8153

.7720

.7037

.5891

.0000

1.0000

1.0000
.9996
.9996
.9996
.9996

.9992

.9992

.99&3
:9988
.9988

.9980

.9976

.9968

.9964

.9936

.9948

.9940

.9932

.gg21+

.9912

.9900

.9884

.9872

.9853

.9837

.9817

.9799

.9775

.9752

.9724

.9696

.9667

.9631
-9596
.9561 ,

.$3520

.9479

.9436

.9388

.9339

%

.

—

1.0000

.9999

.9999

.9998
,9998

.9996

.9994

.9992

.9990

.9986

.9982
.J&X$

.9964

.9954

.9942

.9930

.9914

.989$

.9872

.9849

.9819

.9785

.g746

.9702 .

.9651
:;;2;

.9460

.9380

.9291

.9193

.9086

.8966

.8836

.86g4

.8~0

.8372

.8192

.7998

1.0000

.9999

.9999

.9998

.9996

.9996

.9994

.9990

.9988

.9982

.9976

.9968

.9956

.9944

.9926

.9906“

.9878‘

.9947

.9809
;;;3

.9639

.9559

.9465

.9357

.9229

.9082

.7681

.7350

.69&M

.6595

.6173

w
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TABLE2.– VALUESOF U* GIVENBY FORMOIA(100) -

AND 0*1 GIVENBY FORMtIGA(10~)

IIn formula(100), s =
1
~aq; 7 = 1.5. D

formula(105), a amiqh de erminedby
equations (106) for y = 1.5. 1

s fJ)* O*
1

-0.30 0.8832 0.5821
-.28 .8687 .5955
-.26 .8520 .6072
-.24 .8329 .6165
-.22 .8108 .6227

-.20 .7849 X3;
-.~8 .7548
-.16 .7195 .6132
-.14 .6779 .5962
-.).2 .6283 .5690

–.10 .5690 .5292
–*09 .5349 .5037
–.08 .4973 .4738
–.07 .4559 .4389
-.06 .4101 .3986

–.05 .3597 .352?
-.04 .3028 .2989
–.03 .2394 .2380
–.02 .1686 .1686
–.01 .0895 .0897

.00 .0000 .0000

.01 –.1021 –.1016

.02 –.2183 –.2164

.03 –.3503 –.3464

.04 –.5034 –.4930

.05 ~ 6757 –.6585

.06 –.8449

.07 –I.1270 –1.0552

.08 –1.k127~ –I.2921

.09 –L7536 –1.5588

.10 -2.1659 ‘–1.85gk

.12 –3.2931 -2.5792

.14 –5.0852 –3.4935

.16 -8.1820 4.6564

.18 -14.27g4 -6.1398

.20 -29.0994 -8.0379
— ——— —

—.———- .—— -- .—. —..

.
.

.
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